Переделка скетча под Arduino Nano Every (atmega4809)

Есть скетч для осциллографа на Arduino Nano. Суть в том что в скетче как я понял есть тонкая настройка регистров и соответственно он не подходит для Arduino Nano Every. Может поможет кто поправить код чтоб работал на ней. Схему тоже прикреплю. Заранее спасибо :smile:

#include <Wire.h>
#include <Adafruit_GFX.h>
//#include <Adafruit_SSD1306.h>
#include <Adafruit_SH1106.h>            // https://github.com/wonho-maker/Adafruit_SH1106
#include <EEPROM.h>

#define SCREEN_WIDTH   128              // OLED display width
#define SCREEN_HEIGHT   64              // OLED display height
#define REC_LENG       200              // size of wave data buffer
#define MIN_TRIG_SWING   5              // minimum trigger swing.(Display "Unsync" if swing smaller than this value

// Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)
#define OLED_RESET     -1              // Reset pin # (or -1 if sharing Arduino reset pin)
//Adafruit_SSD1306 oled(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);   // device name is oled
Adafruit_SH1106 oled(OLED_RESET);        // use this when SH1106

#define R_12k   12       // ピン12の12kオーム
#define R_820k  16       // (16=A2ピン) 820k ohm  for AC low range
#define R_82k   17       // (17=A3ピン) 82k omm for AC Hi range

// Range name table (those are stored in flash memory)
const char vRangeName[10][5] PROGMEM = {"A50V", "A 5V", " 50V", " 20V", " 10V", "  5V", "  2V", "  1V", "0.5V", "0.2V"}; // Vertical display character (number of characters including \ 0 is required)
const char * const vstring_table[] PROGMEM = {vRangeName[0], vRangeName[1], vRangeName[2], vRangeName[3], vRangeName[4], vRangeName[5], vRangeName[6], vRangeName[7], vRangeName[8], vRangeName[9]};
const char hRangeName[12][6] PROGMEM = {"200ms", "100ms", " 50ms", " 20ms", " 10ms", "  5ms", "  2ms", "  1ms", "500us", "200us", "100us", " 50us"};  //  Hrizontal display characters
const char * const hstring_table[] PROGMEM = {hRangeName[0], hRangeName[1], hRangeName[2], hRangeName[3], hRangeName[4], hRangeName[5], hRangeName[6], hRangeName[7], hRangeName[8], hRangeName[9], hRangeName[10], hRangeName[11]};
const PROGMEM float hRangeValue[] = { 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.5e-3, 0.2e-3, 0.2e-3, 0.2e-3}; // record speed in second. ( = 25pix on screen) this value used for freq calc.

int waveBuff[REC_LENG];        // wave form buffer (RAM remaining capacity is barely)
char chrBuff[8];               // display string buffer
char hScale[] = "xxxAs";       // horizontal scale character
char vScale[] = "xxxx";        // vartical scale

float lsb5V    = 0.00563965;   // DC感度(5V)sensivity coefficient of 5V range. std=0.00563965 1.1*630/(1024*120)
float lsb50V   = 0.0512939;    //    (50V)sensivity coefficient of 50V range. std=0.0512939 1.1*520.91/(1024*10.91)

float lsb5Vac  = 0.00630776;   // AC感度(5V)、1LSBあたりの電圧(V) std=0.00630776 V/LSB
float lsb50Vac = 0.0579751;    // AC感度(50V)、1LSBあたりの電圧(V) std=0.0579751 V/LSB

volatile int vRange;           // V-range number                   2:50V,  3:20V,  4:10V,  5:5V,  6:2V,  7:1V,  8:0.5V,  9:0.2V
volatile int hRange;           // H-range nubmer 0:200ms, 1:100ms, 2:50ms, 3:20ms, 4:10ms, 5:5ms, 6;2ms, 7:1ms, 8:500us, 9;200us
volatile int trigD;            // trigger slope flag,     0:positive 1:negative
volatile int scopeP;           // operation scope position number. 0:Veratical, 1:Hrizontal, 2:Trigger slope
volatile boolean hold = false; // hold flag
volatile boolean switchPushed = false; // flag of switch pusshed !
volatile int saveTimer;        // remaining time for saving EEPROM
int timeExec;                  // approx. execution time of current range setting (ms)

int dataMin;                   // buffer minimum value (smallest=0)
int dataMax;                   //        maximum value (largest=1023)
int dataAve;                   // 10 x average value (use 10x value to keep accuracy. so, max=10230)
int dataRms;                   // 10x rms. value
int rangeMax;                  // buffer value to graph full swing
int rangeMin;                  // buffer value of graph botto
int rangeMaxDisp;              // display value of max. (100x value)
int rangeMinDisp;              // display value if min.
int trigP;                     // trigger position pointer on data buffer
boolean trigSync;              // flag of trigger detected
int att10x;                    // 10x attenetor ON (effective when 1)
int inMode;                    // 入力モード 0=DC+, 1=DC+-, 2=AC
int offset5Vac;
int offset50Vac;

float waveFreq;                // frequency (Hz)
float waveDuty;                // duty ratio (%)

// Битовая карта логотипа (убедитесь, что размеры соответствуют вашему дисплею!)
static const unsigned char PROGMEM logo16_glcd_bm[] = {
   0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00111111, 0b00000000, 0b00000011, 0b11111111, 0b11111111, 0b11111111, 0b11111100, 0b01111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111110,
  0b01111111, 0b10000000, 0b00000111, 0b11111111, 0b11111111, 0b11111111, 0b11111110, 0b01111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111110,
  0b01110011, 0b10000000, 0b00000111, 0b00111110, 0b00000000, 0b00000110, 0b00000111, 0b01111100, 0b11111011, 0b11100111, 0b00000111, 0b11111111, 0b10000000, 0b00111000, 0b00111000, 0b00000110,
  0b01011110, 0b10000000, 0b00000101, 0b11101111, 0b11111111, 0b11111111, 0b11111101, 0b01111100, 0b11111011, 0b11100111, 0b00000111, 0b11111111, 0b10000000, 0b00111000, 0b00111000, 0b00000110,
  0b01001100, 0b10000000, 0b00000100, 0b11001101, 0b10000110, 0b00000000, 0b00001001, 0b01111011, 0b00111011, 0b11100100, 0b11111001, 0b11111111, 0b11111111, 0b00100111, 0b11001011, 0b11111110,
  0b01001100, 0b10000000, 0b00000100, 0b11001101, 0b10111111, 0b11111111, 0b11001001, 0b01111011, 0b00111011, 0b11100100, 0b11111001, 0b11111111, 0b11111111, 0b00100111, 0b11001011, 0b11111110,
  0b01001100, 0b10000000, 0b00000100, 0b11001101, 0b10011111, 0b11111111, 0b11001001, 0b01100111, 0b11001000, 0b11100100, 0b11111001, 0b11111111, 0b11111110, 0b01111111, 0b11001000, 0b00001110,
  0b01001100, 0b10000000, 0b00000100, 0b11011101, 0b10111110, 0b01111111, 0b11001001, 0b01100111, 0b11001011, 0b00100100, 0b11111001, 0b00000000, 0b01111000, 0b01111000, 0b00111111, 0b11100110,
  0b01001100, 0b10000000, 0b00000100, 0b11111101, 0b10110010, 0b01110110, 0b11001011, 0b01100111, 0b11001011, 0b00100100, 0b11111001, 0b00000000, 0b01111000, 0b01111000, 0b00111111, 0b11100110,
  0b01001100, 0b10000000, 0b00000100, 0b11101101, 0b10010010, 0b00110010, 0b11001111, 0b01100000, 0b00001011, 0b11000100, 0b11111001, 0b11111111, 0b11111111, 0b00100111, 0b11111111, 0b11100110,
  0b01001100, 0b10000000, 0b00000100, 0b11001101, 0b10110000, 0b00100000, 0b11001101, 0b01100000, 0b00001011, 0b11000100, 0b11111001, 0b11111111, 0b11111111, 0b00100111, 0b11111111, 0b11100110,
  0b01001111, 0b10000000, 0b00001100, 0b11001101, 0b11110000, 0b00100001, 0b11001001, 0b01100111, 0b11001011, 0b11100100, 0b11111001, 0b11111111, 0b10011111, 0b00100111, 0b11110011, 0b11100110,
  0b01011001, 0b10000000, 0b00011100, 0b11001111, 0b01110000, 0b00000111, 0b10001001, 0b01100111, 0b11001011, 0b11100100, 0b11111001, 0b11111111, 0b10011111, 0b00100111, 0b11110011, 0b11100110,
  0b01010011, 0b10000000, 0b00111001, 0b10001110, 0b01110000, 0b00011110, 0b00111001, 0b01100111, 0b11001011, 0b11100111, 0b00000111, 0b11111111, 0b11100000, 0b01100000, 0b00001100, 0b00001110,
  0b01110111, 0b10000000, 0b01111011, 0b00111111, 0b11110000, 0b00111000, 0b11101001, 0b01111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111110,
  0b01101110, 0b00000000, 0b11111110, 0b01111111, 0b11100000, 0b11110011, 0b10001001, 0b01111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111111, 0b11111110,
  0b01111010, 0b00011101, 0b10011100, 0b11111111, 0b11100011, 0b10111110, 0b00001001, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00111010, 0b00111111, 0b00011001, 0b11101001, 0b00001110, 0b00111000, 0b11001001, 0b00000000, 0b00000000, 0b00000001, 0b11111000, 0b01111110, 0b00000011, 0b10000000, 0b00000000, 0b00000000,
  0b00000000, 0b01100010, 0b00110011, 0b11000001, 0b00111100, 0b11100011, 0b11001001, 0b00000000, 0b00000000, 0b00000001, 0b11111110, 0b01111111, 0b10001111, 0b11100000, 0b00000000, 0b00000000,
  0b00000010, 0b11000000, 0b01101111, 0b01000001, 0b11111011, 0b10001111, 0b11001001, 0b00000000, 0b00000000, 0b00000001, 0b10000110, 0b01100001, 0b10011100, 0b01110000, 0b00000000, 0b00000000,
  0b00000011, 0b10011111, 0b11100111, 0b01000001, 0b11011110, 0b00111111, 0b11101001, 0b00000000, 0b00000000, 0b00000001, 0b10000010, 0b01100001, 0b10011000, 0b00110000, 0b00000000, 0b00000000,
  0b00000111, 0b00110000, 0b01110011, 0b11000111, 0b00011100, 0b11111111, 0b11111001, 0b00000000, 0b00000000, 0b00000001, 0b11111110, 0b01111111, 0b10111000, 0b00111000, 0b00000000, 0b00000000,
  0b00001110, 0b01110011, 0b00111000, 0b11001100, 0b01110011, 0b11111111, 0b11011001, 0b00000000, 0b00000000, 0b00000001, 0b11111110, 0b01111111, 0b00110000, 0b00011000, 0b00000000, 0b00000000,
  0b00011010, 0b11110111, 0b10111100, 0b01101101, 0b11001111, 0b10110001, 0b11001001, 0b00000000, 0b00000000, 0b00000001, 0b10000000, 0b01100110, 0b00111000, 0b00111000, 0b00000000, 0b00000000,
  0b00110111, 0b10111111, 0b11110110, 0b00111101, 0b10011111, 0b00101000, 0b11001001, 0b00000000, 0b00000000, 0b00000001, 0b10000000, 0b01100011, 0b00011000, 0b00110000, 0b00000000, 0b00000000,
  0b01100110, 0b00111110, 0b11110011, 0b00011101, 0b10110110, 0b10100000, 0b11001001, 0b00000000, 0b00000000, 0b00000001, 0b10000000, 0b01100011, 0b10011100, 0b01110000, 0b00000000, 0b00000000,
  0b01001100, 0b01111111, 0b11111001, 0b10001101, 0b10010000, 0b10000000, 0b11001011, 0b00000000, 0b00000000, 0b00000001, 0b10000000, 0b01100001, 0b10001111, 0b11100000, 0b00000000, 0b00000000,
  0b01001101, 0b11101101, 0b10011100, 0b10111101, 0b10110000, 0b00000000, 0b11001011, 0b00000000, 0b00000000, 0b00000001, 0b10000000, 0b01100001, 0b11000011, 0b10000000, 0b00000000, 0b00000000,
  0b01001101, 0b11100000, 0b10101100, 0b11111101, 0b10110000, 0b00000000, 0b11001111, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b01001101, 0b11000000, 0b10100100, 0b11001101, 0b11110000, 0b00000000, 0b11001101, 0b00000011, 0b10100010, 0b01111001, 0b11110000, 0b11000111, 0b10001111, 0b00000111, 0b11001100, 0b00100000,
  0b01001101, 0b10000000, 0b00000100, 0b10001101, 0b11110000, 0b00000000, 0b11001001, 0b00000011, 0b10100010, 0b01111001, 0b11110000, 0b11000111, 0b10001111, 0b00000111, 0b11001100, 0b00100000,
  0b01001101, 0b10000000, 0b00000100, 0b10001101, 0b10010000, 0b00000000, 0b11001001, 0b00001100, 0b00100010, 0b01000101, 0b10001011, 0b00110100, 0b01100110, 0b00000110, 0b00100010, 0b11000000,
  0b01001001, 0b10000000, 0b00000100, 0b10001101, 0b10110000, 0b00000000, 0b11001001, 0b00000010, 0b00100010, 0b01111001, 0b11110011, 0b00110111, 0b10000110, 0b00000111, 0b11000001, 0b00000000,
  0b01001001, 0b10000000, 0b00000100, 0b11001101, 0b10110000, 0b00000000, 0b11011001, 0b00000001, 0b10100010, 0b01000001, 0b10000011, 0b00110100, 0b01100110, 0b00000110, 0b00100001, 0b00000000,
  0b01011101, 0b10000000, 0b00000101, 0b11101101, 0b10010000, 0b00000000, 0b11011111, 0b00000001, 0b10100010, 0b01000001, 0b10000011, 0b00110100, 0b01100110, 0b00000110, 0b00100001, 0b00000000,
  0b01110111, 0b10000000, 0b00000111, 0b00111101, 0b10110000, 0b00000000, 0b11110111, 0b00001110, 0b00011100, 0b01000001, 0b10000000, 0b11000100, 0b01100110, 0b00000111, 0b11000001, 0b00000000,
  0b01110011, 0b10000000, 0b00000111, 0b00111111, 0b10110000, 0b00000000, 0b01111111, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00111111, 0b00000000, 0b00000011, 0b11111110, 0b11010000, 0b00000000, 0b01111110, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00111100, 0b00000000, 0b00000011, 0b11111111, 0b01110000, 0b00000000, 0b00111100, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00011100, 0b00000000, 0b00000001, 0b11101001, 0b11110000, 0b00000000, 0b00011100, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00001100, 0b00000000, 0b00000010, 0b11101001, 0b11100000, 0b00000000, 0b00111000, 0b00000011, 0b11000011, 0b10011111, 0b00110011, 0b10001111, 0b00011110, 0b11001100, 0b11101100, 0b01000000,
  0b00101100, 0b00000000, 0b00000010, 0b11001000, 0b10000000, 0b00000000, 0b00110100, 0b00000010, 0b00100100, 0b01011000, 0b10110100, 0b01101000, 0b10010000, 0b11101101, 0b00001100, 0b01000000,
  0b00001000, 0b00000000, 0b00000000, 0b11001000, 0b10000000, 0b00000000, 0b00010100, 0b00000011, 0b11000111, 0b11011000, 0b10110100, 0b01101111, 0b00011110, 0b11011101, 0b00001111, 0b11000000,
  0b00001000, 0b00000000, 0b00000000, 0b10000000, 0b10000000, 0b00000000, 0b00010000, 0b00000011, 0b11000111, 0b11011000, 0b10110100, 0b01101111, 0b00011110, 0b11011101, 0b00001111, 0b11000000,
  0b00001000, 0b00000000, 0b00000000, 0b10000000, 0b10000000, 0b00000000, 0b00011000, 0b00000010, 0b00100100, 0b01011000, 0b10110100, 0b01101000, 0b00010000, 0b11001101, 0b00001100, 0b01000000,
  0b00001000, 0b00000000, 0b00000000, 0b10000000, 0b10000000, 0b00000000, 0b00001000, 0b00000010, 0b00100100, 0b01011111, 0b00110011, 0b10001000, 0b00011110, 0b11001100, 0b11101100, 0b01000000,
  0b00001000, 0b00000000, 0b00000000, 0b10000000, 0b10000000, 0b00000000, 0b00000000, 0b00000010, 0b00100100, 0b01011111, 0b00110011, 0b10001000, 0b00011110, 0b11001100, 0b11101100, 0b01000000,
  0b00001000, 0b00000000, 0b00000000, 0b00000000, 0b10000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b10000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
  0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000,
};


void setup() {
  pinMode(2, INPUT_PULLUP);             // button pussed interrupt (int.0 IRQ)
  pinMode(7, INPUT_PULLUP);             // *ACモード
  pinMode(8, INPUT_PULLUP);             // Select button
  pinMode(9, INPUT_PULLUP);             // Up
  pinMode(10, INPUT_PULLUP);            // Down
  pinMode(11, INPUT_PULLUP);            // Hold
  pinMode(13, OUTPUT);                  // LED
  pinMode(R_12k, INPUT);                // pin12 1/10 attenuator(Off=High-Z, Enable=Output Low)
  pinMode(R_820k, INPUT);               // A2
  pinMode(R_82k, INPUT);                // A3

  uuPinOutputLow(0b00000001111000,0b000000); // output low at pin D3-D6
//  oled.begin(SSD1306_SWITCHCAPVCC, 0x3C); // select 3C or 3D (set your OLED I2C address)
  oled.begin(SH1106_SWITCHCAPVCC, 0x3C);  // use this when SH1106

  auxFunctions();                       // Voltage measure (never return)
  loadEEPROM();                         // read last settings from EEPROM
  analogReference(INTERNAL);            // ADC full scale = 1.1V
  attachInterrupt(0, pin2IRQ, FALLING); // activate IRQ at falling edge mode
  drawBitmap(logo16_glcd_bm);                        // display start message
}

void loop() {
  setInputOffset();                     // coupling mode set(AC/DC)
  setConditions();                      // set measurment conditions
  digitalWrite(13, HIGH);               // flash LED
  readWave();                           // read wave form and store into buffer memory
  digitalWrite(13, LOW);                // stop LED
  setConditions();                      // set measurment conditions again (reflect change during measure)
  dataAnalize();                        // analize data
  writeCommonImage();                   // write fixed screen image (2.6ms)
  plotData();                           // plot waveform (10-18ms)
  dispInf();                            // display information (6.5-8.5ms)
  oled.display();                       // send screen buffer to OLED (37ms)
  saveEEPROM();                         // save settings to EEPROM if necessary
  while (hold == true) {                // wait if Hold flag ON
    dispHold();
    if (inMode > 0) {                   // DCモード以外だったら if DC mode,
      if (acZero() == 1) {              // オフセット調整が実行されたら if offset adj. executed
        scopeP = 0;                     // SELECTのスコープ位置を垂直感度に戻す scope position to vartical
        hold = false;                   // ホールド解除 cancel hold
      }
      delay(10);
    }                                   //
  }
}

int acZero() {                         // ACレンジオフセット補正 cancel AC renge offset
  if (digitalRead(8) == LOW) {         // SELECT が押されたら if select pushed
    if (vRange >= 5) {                 // レンジが5V以下なら、range = 5V or less
      offset5Vac = dataAve / 10;       // オフセット値を修正 adjust the offset
    } else {                           // 10V以上なら range more than 5V
      offset50Vac = dataAve / 10;      // オフセット値を修正 adjust the offset
    }
    saveEEPROM();                      // 補正量をEEPROMに保存
    return 1;                          // 修正あり adjusted
  }
  return 0;                            // 修正無し no adjust
}

void setInputOffset() {                // 入力カップリングに対応したオフセットの設定 set offset circuit
  if (inMode >= 1) {                   // モード1,2(オフセット使用)なら if AC mode
    if (att10x == 1) {                 // 10xアッテネータ使用なら 10X-att enabled
      pull5V(R_82k);                   // 82kΩで5Vに引っ張る pull 5V by 82k
      hiZ(R_820k);
    } else {                           // 10xアッテネータ無しなら 10X-att disable
      hiZ(R_82k);
      pull5V(R_820k);                  // 820kΩで5Vに引っ張る pull 5V by 820k
    }
  } else {                             // モード0(オフセット無し)なら DC mode
    hiZ(R_820k);                       // Hi-Z
    hiZ(R_82k);                        // Hi-Z
  }
}

void hiZ(int n) {                      // 指定ピンをHi-Zに設定 set the pin to hi-z
  pinMode(n, INPUT);                   // 入力にして set INPUT
  digitalWrite(n, LOW);                // 念のためにプルアップを解除 no pull up
}

void pull5V(int n) {                   // 指定ピンを抵抗経由で5Vに引っ張る pull 5V through registor 
  pinMode(n, OUTPUT);                  // 出力にして set OUTPUT
  digitalWrite(n, HIGH);               // HIGHを出力 OUTPUT HIGH
}

void pullGND(int n) {                  // 指定ピンを抵抗経由でGNDに引っ張る pull GND through registor 
  pinMode(n, OUTPUT);                  // 出力にして set OUTPUT
  digitalWrite(n, LOW);                // LOWを出力 output LOW
}

void setConditions() {              // 測定条件の設定 measuring condition setting
  if (digitalRead(7) == LOW) {      // 入力モードスイッチの状態を読んで、LOWだったら、set AC/DC
    inMode = 1;                     // ACモード
  } else {
    inMode = 0;                     // DCモード
  }

  // get range name from PROGMEM
  strcpy_P(hScale, (char*)pgm_read_word(&(hstring_table[hRange])));  // H range name
  strcpy_P(vScale, (char*)pgm_read_word(&(vstring_table[vRange])));  // V range name

  switch (vRange) {                // setting of Vrange
    case 0:                        // 削除した、delaeted Auto50V range
      att10x = 1;                  // use input attenuator
      break;

    case 1:                        // 削除した、delaeted Auto 5V range
      att10x = 0;                  // no attenuator
      break;

    case 2:                        // 50V range
      if (inMode == 0) {
        rangeMax = 50.0 / lsb50V;  // set full scale pixcel count number
        rangeMaxDisp = 5000;       // vartical scale (set100x value)
        rangeMin = 0;
        rangeMinDisp = 0;
      } else {
        rangeMax = offset50Vac + 25.0 / lsb50Vac; // set full scale pixcel count number
        rangeMaxDisp = 2500;       // vartical scale (set100x value)
        rangeMin = offset50Vac - 25.0 / lsb50Vac;
        rangeMinDisp = -2500;
      }
      att10x = 1;                  // use input attenuator
      break;

    case 3:                        // 20V range
      if (inMode == 0) {
        rangeMax = 20.0 / lsb50V;  // set full scale pixcel count number
        rangeMaxDisp = 2000;
        rangeMin = 0;
        rangeMinDisp = 0;
      } else {
        rangeMax = offset50Vac + 10.0 / lsb50Vac;  // set full scale pixcel count number
        rangeMaxDisp = 1000;
        rangeMin = offset50Vac - 10.0 / lsb50Vac;
        rangeMinDisp = -1000;
      }
      att10x = 1;                  // use input attenuator
      break;

    case 4:                        // 10V range
      if (inMode == 0) {
        rangeMax = 10.0 / lsb50V;  // set full scale pixcel count number
        rangeMaxDisp = 1000;
        rangeMin = 0;
        rangeMinDisp = 0;
      } else {
        rangeMax = offset50Vac + 5.0 / lsb50Vac;  // set full scale pixcel count number
        rangeMaxDisp = 500;
        rangeMin = offset50Vac - 5.0 / lsb50Vac;
        rangeMinDisp = -500;
      }
      att10x = 1;                  // use input attenuator
      break;

    case 5:                        // 5V range
      if (inMode == 0) {
        rangeMax = 5.0 / lsb5V;    // set full scale pixcel count number
        rangeMaxDisp = 500;
        rangeMin = 0;
        rangeMinDisp = 0;
      } else {
        rangeMax = offset5Vac + 2.5 / lsb5Vac;    // set full scale pixcel count number
        rangeMaxDisp = 250;
        rangeMin = offset5Vac - 2.5 / lsb5Vac;
        rangeMinDisp = -250;
      }
      att10x = 0;                  // no input attenuator
      break;

    case 6:                        // 2V range
      if (inMode == 0) {
        rangeMax = 2.0 / lsb5V;    // set full scale pixcel count number
        rangeMaxDisp = 200;
        rangeMin = 0;
        rangeMinDisp = 0;
      } else {
        rangeMax = offset5Vac + 1.0 / lsb5Vac;    // set full scale pixcel count number
        rangeMaxDisp = 100;
        rangeMin = offset5Vac - 1.0 / lsb5Vac;
        rangeMinDisp = -100;
      }
      att10x = 0;                  // no input attenuator
      break;

    case 7:                        // 1V range
      if (inMode == 0) {
        rangeMax = 1.0 / lsb5V;    // set full scale pixcel count number
        rangeMaxDisp = 100;
        rangeMin = 0;
        rangeMinDisp = 0;
      } else {
        rangeMax = offset5Vac + 0.5 / lsb5Vac;    // set full scale pixcel count number
        rangeMaxDisp = 50;
        rangeMin = offset5Vac - 0.5 / lsb5Vac;
        rangeMinDisp = -50;
      }
      att10x = 0;                  // no input attenuator
      break;

    case 8:                        // 0.5V range
      if (inMode == 0) {
        rangeMax = 0.5 / lsb5V;    // set full scale pixcel count number
        rangeMaxDisp = 50;
        rangeMin = 0;
        rangeMinDisp = 0;
      } else {
        rangeMax = offset5Vac + 0.25 / lsb5Vac;  // set full scale pixcel count number
        rangeMaxDisp = 25;
        rangeMin = offset5Vac - 0.25 / lsb5Vac;
        rangeMinDisp = -25;
      }
      att10x = 0;                  // no input attenuator
      break;

    case 9:                        // 0.2V range
      if (inMode == 0) {
        rangeMax = 0.2 / lsb5V;    // set full scale pixcel count number
        rangeMaxDisp = 20;
        rangeMin = 0;
        rangeMinDisp = 0;
      } else {
        rangeMax = offset5Vac + 0.1 / lsb5Vac;  // set full scale pixcel count number
        rangeMaxDisp = 10;
        rangeMin = offset5Vac - 0.1 / lsb5Vac;
        rangeMinDisp = -10;
      }
      att10x = 0;                  // no input attenuator
      break;
  }
}

void writeCommonImage() {                 // 共通画像の作画 Common screen image drawing
  oled.clearDisplay();                    // 全クリア erase all(0.4ms)
  oled.setTextColor(WHITE);               // write in white character
  oled.drawFastVLine(26, 9, 55, WHITE);   // left vartical line
  oled.drawFastVLine(127, 9, 3, WHITE);   // right vrtical line up
  oled.drawFastVLine(127, 61, 3, WHITE);  // right vrtical line bottom

  oled.drawFastHLine(24, 9, 7, WHITE);    // Max value auxiliary mark
  oled.drawFastHLine(24, 36, 2, WHITE);
  oled.drawFastHLine(24, 63, 7, WHITE);

  oled.drawFastHLine(51, 9, 3, WHITE);    // Max value auxiliary mark
  oled.drawFastHLine(51, 63, 3, WHITE);

  oled.drawFastHLine(76, 9, 3, WHITE);    // Max value auxiliary mark
  oled.drawFastHLine(76, 63, 3, WHITE);

  oled.drawFastHLine(101, 9, 3, WHITE);   // Max value auxiliary mark
  oled.drawFastHLine(101, 63, 3, WHITE);

  oled.drawFastHLine(123, 9, 5, WHITE);   // right side Max value auxiliary mark
  oled.drawFastHLine(123, 63, 5, WHITE);

  for (int x = 26; x <= 128; x += 5) {
    oled.drawFastHLine(x, 36, 2, WHITE);  // Draw the center line (horizontal line) with a dotted line
  }
  for (int x = (127 - 25); x > 30; x -= 25) {
    for (int y = 10; y < 63; y += 5) {
      oled.drawFastVLine(x, y, 2, WHITE); // Draw 3 vertical lines with dotted lines
    }
  }
}

void readWave() {                          // 波形の読み取り Record waveform to memory array
  if (att10x == 1) {                       // if 1/10 attenuator required
    pullGND(R_12k);
  } else {                                 // if not required
    hiZ(R_12k);
  }
  switchPushed = false;                    // Clear switch operation flag

  switch (hRange) {                        // set recording conditions in accordance with the range number
    case 0:                                // 200ms range
      timeExec = 1600 + 60;                // Approximate execution time(ms) Used for countdown until saving to EEPROM
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x07;              // dividing ratio = 128 (default of Arduino)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 112us
        delayMicroseconds(7888);           // timing adjustment
        if (switchPushed == true) {        // if any switch touched
          switchPushed = false;
          break;                           // abandon record(this improve response)
        }
      }
      break;

    case 1:                                // 100ms range
      timeExec = 800 + 60;                 // Approximate execution time(ms) Used for countdown until saving to EEPROM
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x07;              // dividing ratio = 128 (default of Arduino)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 112us
        delayMicroseconds(3860);           // timing adjustmet tuned
        if (switchPushed == true) {        // if any switch touched
          switchPushed = false;
          break;                           // abandon record(this improve response)
        }
      }
      break;

    case 2:                                // 50ms range
      timeExec = 400 + 60;                 // Approximate execution time(ms)
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x07;              // dividing ratio = 128 (default of Arduino)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 112us
        delayMicroseconds(1880);           // timing adjustmet tuned
        if (switchPushed == true) {        // if any switch touched
          break;                           // abandon record(this improve response)
        }
      }
      break;

    case 3:                                // 20ms range
      timeExec = 160 + 60;                 // Approximate execution time(ms)
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x07;              // dividing ratio = 128 (default of Arduino)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 112us
        delayMicroseconds(686);            // timing adjustmet tuned
        if (switchPushed == true) {        // if any switch touched
          break;                           // abandon record(this improve response)
        }
      }
      break;

    case 4:                                // 10ms range
      timeExec = 80 + 60;                  // Approximate execution time(ms)
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x07;              // dividing ratio = 128 (default of Arduino)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 112us
        delayMicroseconds(287);            // timing adjustmet tuned
        if (switchPushed == true) {        // if any switch touched
          break;                           // abandon record(this improve response)
        }
      }
      break;

    case 5:                                // 5ms range
      timeExec = 40 + 60;                  // Approximate execution time(ms)
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x07;              // dividing ratio = 128 (default of Arduino)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 112μs
        delayMicroseconds(87);             // timing adjustmet tuned
        if (switchPushed == true) {        // if any switch touched
          break;                           // abandon record(this improve response)
        }
      }
      break;

    case 6:                                // 2ms range
      timeExec = 16 + 60;                  // Approximate execution time(ms)
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x06;              // dividing ratio = 64 (0x1=2, 0x2=4, 0x3=8, 0x4=16, 0x5=32, 0x6=64, 0x7=128)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 56us
        delayMicroseconds(23);             // timing adjustmet tuned
      }
      break;

    case 7:                                // 1ms range
      timeExec = 8 + 60;                   // Approximate execution time(ms)
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x05;              // dividing ratio = 16 (0x1=2, 0x2=4, 0x3=8, 0x4=16, 0x5=32, 0x6=64, 0x7=128)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 28us
        delayMicroseconds(10);             // timing adjustmet tuned
      }
      break;

    case 8:                                // 500us range
      timeExec = 4 + 60;                   // Approximate execution time(ms)
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x04;              // dividing ratio = 16(0x1=2, 0x2=4, 0x3=8, 0x4=16, 0x5=32, 0x6=64, 0x7=128)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 16us
        delayMicroseconds(4);              // timing adjustmet
        // time fine adjustment 0.0625 x 8 = 0.5us(nop=0.0625us @16MHz)
        asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop");
      }
      break;

    case 9:
    case 10:
    case 11:                               // 共通 common 200, 100, 50us range
      timeExec = 2 + 60;                   // Approximate execution time(ms)
      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x02;              // dividing ratio = 4(0x1=2, 0x2=4, 0x3=8, 0x4=16, 0x5=32, 0x6=64, 0x7=128)
      for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
        waveBuff[i] = analogRead(0);       // read and save approx 6us
        // time fine adjustment 0.0625 * 20 = 1.25us (nop=0.0625us @16MHz)
        asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop");
        asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop");
      }
      break;
  }
}

void dataAnalize() {                       // 波形の分析 get various information from wave form
  long d;
  long sum = 0;

  // search max and min value
  dataMin = 1023;                          // min value initialize to big number
  dataMax = 0;                             // max value initialize to small number
  for (int i = 0; i < REC_LENG; i++) {     // serach max min value
    d = waveBuff[i];
    sum = sum + d;
    if (d < dataMin) {                     // update min
      dataMin = d;
    }
    if (d > dataMax) {                     // updata max
      dataMax = d;
    }
  }

  // calculate average
  dataAve = (sum + 10) / 20;               // Average value calculation (calculated by 10 times to improve accuracy)

  // 実効値の計算 rms value calc.
  sum = 0;
  for (int i = 0; i < REC_LENG; i++) {     // バッファ全体に対し to all buffer
    d = waveBuff[i] - (dataAve + 5) / 10;  // オーバーフロー防止のため生の値で計算(10倍しない)
    sum += d * d;                          // 二乗和を積分
  }
  dataRms = sqrt(sum / REC_LENG);          // 実効値の10倍の値 get rms value

  // Trigger position search
  for (trigP = ((REC_LENG / 2) - 51); trigP < ((REC_LENG / 2) + 50); trigP++) { // Find the points that straddle the median at the center ± 50 of the data range
    if (trigD == 0) {                             // if trigger direction is positive
      if ((waveBuff[trigP - 1] < (dataMax + dataMin) / 2) && (waveBuff[trigP] >= (dataMax + dataMin) / 2)) {
        break;                                    // positive trigger position found !
      }
    } else {                                      // trigger direction is negative
      if ((waveBuff[trigP - 1] > (dataMax + dataMin) / 2) && (waveBuff[trigP] <= (dataMax + dataMin) / 2)) {
        break;
      }                                           // negative trigger poshition found !
    }
  }
  trigSync = true;
  if (trigP >= ((REC_LENG / 2) + 50)) {           // If the trigger is not found in range
    trigP = (REC_LENG / 2);                       // Set it to the center for the time being
    trigSync = false;                             // set Unsync display flag
  }
  if ((dataMax - dataMin) <= MIN_TRIG_SWING) {    // amplitude of the waveform smaller than the specified value
    trigSync = false;                             // set Unsync display flag
  }
  freqDuty();
}

void freqDuty() {                               // 周波数とデューティ比を求める detect frequency and duty cycle value from waveform data
  int swingCenter;                              // center of wave (half of p-p)
  float p0 = 0;                                 // 1-st posi edge
  float p1 = 0;                                 // total length of cycles
  float p2 = 0;                                 // total length of pulse high time
  float pFine = 0;                              // fine position (0-1.0)
  float lastPosiEdge;                           // last positive edge position

  float pPeriod;                                // pulse period
  float pWidth;                                 // pulse width

  int p1Count = 0;                              // wave cycle count
  int p2Count = 0;                              // High time count

  boolean a0Detected = false;
  //  boolean b0Detected = false;
  boolean posiSerch = true;                     // true when serching posi edge

  swingCenter = (3 * (dataMin + dataMax)) / 2;  // calculate wave center value

  for (int i = 1; i < REC_LENG - 2; i++) {      // scan all over the buffer
    if (posiSerch == true) {   // posi slope (frequency serch)
      if ((sum3(i) <= swingCenter) && (sum3(i + 1) > swingCenter)) {  // if across the center when rising (+-3data used to eliminate noize)
        pFine = (float)(swingCenter - sum3(i)) / ((swingCenter - sum3(i)) + (sum3(i + 1) - swingCenter) );  // fine cross point calc.
        if (a0Detected == false) {              // if 1-st cross
          a0Detected = true;                    // set find flag
          p0 = i + pFine;                       // save this position as startposition
        } else {
          p1 = i + pFine - p0;                  // record length (length of n*cycle time)
          p1Count++;
        }
        lastPosiEdge = i + pFine;               // record location for Pw calcration
        posiSerch = false;
      }
    } else {   // nega slope serch (duration serch)
      if ((sum3(i) >= swingCenter) && (sum3(i + 1) < swingCenter)) {  // if across the center when falling (+-3data used to eliminate noize)
        pFine = (float)(sum3(i) - swingCenter) / ((sum3(i) - swingCenter) + (swingCenter - sum3(i + 1)) );
        if (a0Detected == true) {
          p2 = p2 + (i + pFine - lastPosiEdge); // calucurate pulse width and accumurate it
          p2Count++;
        }
        posiSerch = true;
      }
    }
  }

  pPeriod = p1 / p1Count;                 // pulse period
  pWidth  = p2 / p2Count;                 // palse width

  waveFreq = 1.0 / ((pgm_read_float(hRangeValue + hRange) * pPeriod) / 25.0); // frequency
  waveDuty = 100.0 * pWidth / pPeriod;                                        // duty ratio
}

int sum3(int k) {       // Sum of before and after and own value
  int m = waveBuff[k - 1] + waveBuff[k] + waveBuff[k + 1];
  return m;
}

void drawBitmap(const unsigned char *bitmap) {
  oled.clearDisplay();
  oled.drawBitmap(0, 0, bitmap, 128, 64, 1); // 128x64 - размер дисплея
  oled.display();
  delay(1500);
  oled.clearDisplay();
}
void dispHold() {                         // display "Hold"
  oled.fillRect(42, 11, 24, 8, BLACK);    // black paint 4 characters
  oled.setCursor(42, 11);
  oled.print(F("Hold"));                  // Hold
  oled.display();                         //
}

void dispInf() {                          // 各種情報の表示 Display of various information
  float volt;
  // DC/ACカップル表示 display DC/AC couple mode
  oled.setCursor(0, 0);
  if (inMode == 0) {
    oled.print(F("DC"));
  } else {
    oled.print(F("AC"));
  }

  // 垂直感度表示 vertical sensitivity
  oled.setCursor(15, 0);                  // around top left
  oled.print(vScale);                     // vertical sensitivity value
  if (scopeP == 0) {                      // if scoped
    oled.drawFastHLine(13, 7, 27, WHITE); // display scoped mark at the bottom
    oled.drawFastVLine(13, 5,  2, WHITE);
    oled.drawFastVLine(39, 5,  2, WHITE);
  }

  // 水平速度表示 horizontal sweep speed
  oled.setCursor(42, 0);                  //
  oled.print(hScale);                     // display sweep speed (time/div)
  if (scopeP == 1) {                      // if scoped
    oled.drawFastHLine(40, 7, 33, WHITE); // display scoped mark
    oled.drawFastVLine(40, 5,  2, WHITE);
    oled.drawFastVLine(72, 5,  2, WHITE);
  }

  // トリガー極性表示 trigger polarity
  oled.setCursor(75, 0);                  // at top center
  if (trigD == 0) {                       // if positive
    oled.print(char(0x18));               // up mark
  } else {
    oled.print(char(0x19));               // down mark              ↓
  }
  if (scopeP == 2) {                      // if scoped
    oled.drawFastHLine(72, 7, 11, WHITE); // display scoped mark
    oled.drawFastVLine(72, 5,  2, WHITE);
    oled.drawFastVLine(82, 5,  2, WHITE);
  }

  // 電圧測定結果表示 average voltage
  if (inMode == 0) {                      // DCモードなら if DC mode
    oled.setCursor(86, 0);
    oled.print(F("av"));                  // av : average
    if (att10x == 1) {                    // if 10x attenuator is used
      volt = dataAve * lsb50V / 10.0;     // 平均電圧50V(10倍値なので補正) range value
    } else {                              // no!
      volt = dataAve * lsb5V / 10.0;      // 5V (10倍値なので補正)range value
    }
    if (volt < 10.0) {                    // if less than 10V
      dtostrf(volt, 4, 2, chrBuff);       // format x.xx
    } else {                              // no! over 10
      dtostrf(volt, 4, 1, chrBuff);       // format xx.x
    }
  } else {                                // AC モードなら AC mode
    oled.setCursor(86, 0);
    oled.print(F("rm"));                  // rm : rms root mean square

    if (att10x == 1) {                    // if 10x attenuator is used
      volt = dataRms * lsb50Vac;          // 実効値 50V range value
    } else {                              // no!
      volt = dataRms * lsb5Vac;           // 5V range value
    }

    if (volt < 10.0) {                    // if less than 10V
      dtostrf(volt, 4, 2, chrBuff);       // format x.xx
    } else {                              // no!
      dtostrf(volt, 4, 1, chrBuff);       // format xx.x
    }
  }
  oled.setCursor(98, 0);                  // at top right
  oled.print(chrBuff);                    // 電圧の値を表示 display voltage 
  oled.print(F("V"));

  // 波形の左に垂直電圧目盛り表示 vartical scale lines
  volt = rangeMaxDisp / 100.0;            // convert Max voltage
  if (vRange <= 3) {                      // 20Vレンジかそれ以上なら if range is 20 or more
    dtostrf(volt, 4, 0, chrBuff);         // format ** 
  } else {
    if (vRange <= 7) {
      dtostrf(volt, 4, 1, chrBuff);       // format **.* 
    } else {
      dtostrf(volt, 4, 2, chrBuff);       // format *.** 
    }
  }
  oled.setCursor(0, 9);
  oled.print(chrBuff);                    // 上限値 display Max value

  volt = (rangeMaxDisp + rangeMinDisp) / 200.0; // center value calculation
  if (vRange <= 3) {                      // 20Vレンジかそれ以上なら
    dtostrf(volt, 4, 0, chrBuff);         // format ** 20
  } else {
    if (vRange <= 7) {
      dtostrf(volt, 4, 1, chrBuff);       // format **.* 
    } else {
      dtostrf(volt, 4, 2, chrBuff);       // format *.** 
    }
  }
  oled.setCursor(0, 33);
  oled.print(chrBuff);                    // 中央値 display the value

  volt = rangeMinDisp / 100.0;            // 波形下限値 convart Min voltage
  if (vRange <= 3) {                      // 20Vレンジかそれ以上なら
    dtostrf(volt, 4, 0, chrBuff);         // format ** 20
  } else {
    if (vRange <= 7) {
      dtostrf(volt, 4, 1, chrBuff);       // format **.* 
    } else {
      dtostrf(volt, 4, 2, chrBuff);       // format *.** 
      if (inMode >= 1 ) {                 // 0.5 0.2V なら圧縮表示 compress zero(-0.25 -> -.25)
        chrBuff[1] = chrBuff[2];          // 符号より右の文字列を左シフト(先頭のゼロを消して文字数削減)
        chrBuff[2] = chrBuff[3];
        chrBuff[3] = chrBuff[4];
        chrBuff[4] = chrBuff[5];
      }
    }
  }
  oled.setCursor(0, 57);
  oled.print(chrBuff);                    // 下限値 display the value

  // 周波数とデューティ比の表示 display frequency, duty % or trigger missed
  if (trigSync == false) {                // If trigger point can't found
    oled.fillRect(92, 14, 24, 8, BLACK);  // black paint 4 character
    oled.setCursor(92, 14);               //
    oled.print(F("unSync"));              // dosplay Unsync
  } else {
    oled.fillRect(91, 12, 25, 9, BLACK);  // erase Freq area
    oled.setCursor(92, 13);               // set display locatio
    if (waveFreq < 99.9) {                // if less than 99.9Hz
      oled.print(waveFreq, 1);            // display 99.9Hz
      oled.print(F("Hz"));
    } else if (waveFreq < 999.9) {       // if less than 999.9Hz
      oled.print(waveFreq, 0);           // display 999Hz
      oled.print(F("Hz"));
    } else if (waveFreq < 9999.9) {      // if less than 9.9999kHz
      oled.print((waveFreq / 1000.0), 2); // display 9.99kH
      oled.print(F("kH"));
    } else {                              // if more
      oled.print((waveFreq / 1000.0), 1); // display 99.9kH
      oled.print(F("kH"));
    }
    oled.fillRect(97, 21, 25, 10, BLACK); // erase Freq area (as small as possible)
    oled.setCursor(98, 23);               // set location
    oled.print(waveDuty, 1);              // display duty (High level ratio) in %
    oled.print(F("%"));
  }
  // デバッグ用 this for debug (value display on screen)
  //  oled.fillRect(40, 12, 25, 9, BLACK);    // 波形領域の左上に、値の表示用に黒塗り
  //  oled.setCursor(40, 13);                 //
  //  oled.print(hRange);                     // 値を表示
}

void plotData() {                    // 波形の画面へのプロット plot waveform on OLED
  long y1, y2;
  if (hRange <= 9) {                 // 通常表示 noromal plot
    for (int x = 0; x <= 98; x++) {
      y1 = map(waveBuff[x + trigP - 50], rangeMin, rangeMax, 63, 9); // convert to plot address
      y1 = constrain(y1, 9, 63);                                     // Crush(Saturate) the protruding part
      y2 = map(waveBuff[x + trigP - 49], rangeMin, rangeMax, 63, 9); // to address calucurate
      y2 = constrain(y2, 9, 63);                                     //
      oled.drawLine(x + 27, y1, x + 28, y2, WHITE);                  // connect between point
    }
  } else if (hRange == 10) {         // 100usレンジなら2倍拡大表示 zoom 2X when 100us range
    for (int x = 0; x <= 49; x++) {
      y1 = map(waveBuff[x + trigP - 25], rangeMin, rangeMax, 63, 9); // convert to plot address
      y1 = constrain(y1, 9, 63);                                     // Crush(Saturate) the protruding part
      y2 = map(waveBuff[x + trigP - 24], rangeMin, rangeMax, 63, 9); // to address calucurate
      y2 = constrain(y2, 9, 63);                                     //
      oled.drawLine(x * 2 + 27, y1, x * 2 + 29, y2, WHITE);              // connect between point
    }
  } else if (hRange == 11) {        // 50usレンジなら4倍拡大表示 zoom 4x when 50us range
    for (int x = 0; x <= 24; x++) {
      y1 = map(waveBuff[x + trigP - 13], rangeMin, rangeMax, 63, 9); // convert to plot address
      y1 = constrain(y1, 9, 63);                                     // Crush(Saturate) the protruding part
      y2 = map(waveBuff[x + trigP - 12], rangeMin, rangeMax, 63, 9); // to address calucurate
      y2 = constrain(y2, 9, 63);                                     //
      oled.drawLine(x * 4 + 27, y1, x * 4 + 31, y2, WHITE);              // connect between point
    }
  }
}

void saveEEPROM() {                    // Save the setting value in EEPROM after waiting a while after the button operation.
  if (saveTimer > 0) {                 // If the timer value is positive,
    saveTimer = saveTimer - timeExec;  // Timer subtraction
    if (saveTimer < 0) {               // if time up
      EEPROM.write(0, vRange);         // save current status to EEPROM
      EEPROM.write(1, hRange);
      EEPROM.write(2, trigD);
      EEPROM.write(3, scopeP);
      EEPROM.write(4, offset5Vac >> 8);    // AC測定5Vレンジのオフセット値の上位(ビッグエンディアンで記録)
      EEPROM.write(5, offset5Vac & 0xFF);  //                下位
      EEPROM.write(6, offset50Vac >> 8);   //      50V                  上位
      EEPROM.write(7, offset50Vac & 0xFF); //                           下位
    }
  }
}

void loadEEPROM() {                    // Read setting values from EEPROM (abnormal values will be corrected to default)
  int x;
  x = EEPROM.read(0);                  // vRange
  if ((x < 0) || (x > 9)) {            // if out side 0-9
    x = 3;                             // default value
  }
  vRange = x;

  x = EEPROM.read(1);                  // hRange
  if ((x < 0) || (x > 11)) {           // if out of 0-11
    x = 3;                             // default value
  }
  hRange = x;
  x = EEPROM.read(2);                  // trigD
  if ((x < 0) || (x > 1)) {            // if out of 0-1
    x = 1;                             // default value
  }
  trigD = x;
  x = EEPROM.read(3);                  // scopeP
  if ((x < 0) || (x > 2)) {            // if out of 0-2
    x = 1;                             // default value
  }
  scopeP = x;

  x = EEPROM.read(4);                  // AC 5Vレンジのオフセット値 offset value of AC5V
  x = x << 8 ;
  x = x | EEPROM.read(5);
  if ((x < 350) || (x > 650 )) {       // 異常値だったら(350-650の範囲外)if abnormal value,
    x = 594;                           // 理論値をセット default value
  }
  offset5Vac = x;

  x = EEPROM.read(6);                  //AC 50Vレンジのオフセット値 offset value of AC50V
  x = x << 8 ;
  x = x | EEPROM.read(7);
  if ((x < 350) || (x > 650 )) {       // 異常値だったら(350-650の範囲外) if abnormal value,
    x = 546;                           // 理論値をセット default value
  }
  offset50Vac = x;
}

void auxFunctions() {                     // 補助機能を起動 select AUX function
  if (digitalRead(8) == LOW) {            // セレクトボタンが押されていたらバッテリー電圧測定 if SELECT button pushed, measure battery voltage
    battVolt();
  }
  if (digitalRead(10) == LOW) {            // DOWN ボタンなら DMM50Vレンジ
    dmm5V();
  }
  if (digitalRead(9) == LOW) {           // UPボタンなら DMM5Vレンジ
    dmm50V();
  }
}

void battVolt() {                         // バッテリー電圧測定 Battery voltage measure (this for pen osillo)
  float volt;
  long x;
  analogReference(DEFAULT);               // ADC full scale set to Vcc
  while (1) {                             // do forever
    x = 0;
    for (int i = 0; i < 100; i++) {       // 100 times
      x = x + analogRead(1);              // A1ピンの電圧測定read A1 pin voltage and accumulate
    }
    volt = (x / 100.0) * 5.0 / 1023.0;    // convert voltage value
    oled.clearDisplay();                  // all erase screen(0.4ms)
    oled.setTextColor(WHITE);             // write in white character
    oled.setCursor(20, 16);               //
    oled.setTextSize(1);                  // standerd size character
    oled.println(F("Battery voltage"));
    oled.setCursor(35, 30);               //
    oled.setTextSize(2);                  // double size character
    dtostrf(volt, 4, 2, chrBuff);         // display batterry voltage x.xxV
    oled.print(chrBuff);
    oled.println(F("V"));
    oled.display();
    delay(150);
  }
}

void dmm5V() {                             // 電圧計 5V モード digital voltmeter 5V range
  float volt, vPP;
  analogReference(INTERNAL);
  while (1) {                              // 無限ループで、
    digitalWrite(13, HIGH);                // flash LED
    oled.clearDisplay();                   // erase screen (0.4ms)
    oled.setTextColor(WHITE);              // write in white character
    oled.setCursor(0, 0);                  //
    oled.setTextSize(1);                   // by standerd size character

    if (digitalRead(7) == HIGH) {          // DC モードだったら if awitch is DC mode
      hiZ(R_820k);                         // 測定条件設定 set measure condition
      hiZ(R_82k);
      hiZ(R_12k);                          //
      volt = analogRead(0) * lsb5V;        // DC電圧測定 measure voltage
      oled.println(F("DC DVM 5V range"));  //
      oled.setCursor(20, 22);              //
      oled.setTextSize(2);                 // double size character
      dtostrf(volt, 4, 2, chrBuff);        // display voltage x.xxV
      oled.print(chrBuff);
      oled.print(F("V"));
    } else {                               // AC モード AC mode
      pull5V(R_820k);                      // give offset
      hiZ(R_82k);
      hiZ(R_12k);                          // Set the attenuator control pin to Hi-z (use as input)

      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x07;              // dividing ratio = 128 (default of Arduino)
      for (int i = 0; i < REC_LENG; i++) { // 5msレンジでバッファに波形を記録 recoord to buffer at 5ms range settings
        waveBuff[i] = analogRead(0);       // read and save approx 112μs
        delayMicroseconds(87);             // timing adjustmet tuned
      }
      dataAnalize();                       // 波形を解析 analize data

      volt = dataRms * lsb5Vac;            // 実効値を計算 get RMS value
      vPP = (dataMax - dataMin) * lsb5Vac; // P-P値を計算 get Peak to peak voltage

      oled.println(F("AC DVM 5V range"));
      oled.setTextSize(2);                 // double size character
      dtostrf(volt, 4, 2, chrBuff);        // foromat x.xx
      oled.setCursor(20, 16);              //
      oled.print(chrBuff);                 // 実効値を表示 display rms voltage
      oled.println(F("Vrms"));
      dtostrf(vPP, 4, 2, chrBuff);         // format x.xx
      oled.setCursor(20, 38);              //
      oled.print(chrBuff);                 // P-P電圧を表示
      oled.println(F("Vpp"));
    }
    oled.display();                        // 実際に表示 actual display here
    digitalWrite(13, LOW);                 // stop LED flash
    delay(150);                            // wait next measure
  }
}

void dmm50V() {                            // 電圧計 5V モード digital voltmeter 5V range
  float volt, vPP;
  analogReference(INTERNAL);
  while (1) {                              // 無限ループで、forever,
    digitalWrite(13, HIGH);                // flash LED
    oled.clearDisplay();                   // erase screen (0.4ms)
    oled.setTextColor(WHITE);              // write in white character
    oled.setCursor(0, 0);                  //
    oled.setTextSize(1);                   // by standerd size character

    if (digitalRead(7) == HIGH) {          // DC モードだったら if awitch is DC mode
      hiZ(R_820k);                         // 測定条件設定 set measure condition
      hiZ(R_82k);
      pullGND(R_12k);                      //
      volt = analogRead(0) * lsb50V;       // DC電圧測定 measure voltage
      oled.println(F("DC DVM 50V range")); //
      oled.setCursor(20, 22);              //
      oled.setTextSize(2);                 // double size character
      dtostrf(volt, 4, 1, chrBuff);        // display voltage xx.xV
      oled.print(chrBuff);
      oled.print(F("V"));
    } else {                               // AC モード AC mode
      hiZ(R_820k);                         // 測定条件設定 set measure condition
      pull5V(R_82k);                       // pull up
      pullGND(R_12k);                      // att 10x

      ADCSRA = ADCSRA & 0xf8;              // clear bottom 3bit
      ADCSRA = ADCSRA | 0x07;              // dividing ratio = 128 (default of Arduino)
      for (int i = 0; i < REC_LENG; i++) { // 5msレンジでバッファに波形を記録 recoord to buffer at 5ms range settings
        waveBuff[i] = analogRead(0);       // read and save approx 112μs
        delayMicroseconds(87);             // timing adjustmet tuned
      }
      dataAnalize();                       // 波形を解析 analize data

      volt = dataRms * lsb50Vac;            // 実効値を計算 get RMS value
      vPP = (dataMax - dataMin) * lsb50Vac; // P-P値を計算 get Peak to peak voltage

      oled.println(F("AC DVM 50V range"));
      oled.setTextSize(2);                  // double size character
      dtostrf(volt, 4, 1, chrBuff);         // foromat xx.x
      oled.setCursor(20, 16);               //
      oled.print(chrBuff);                  // 実効値を表示 display rms voltage
      oled.println(F("Vrms"));
      dtostrf(vPP, 4, 1, chrBuff);          // format xx.x
      oled.setCursor(20, 38);               //
      oled.print(chrBuff);                  // P-P電圧を表示
      oled.println(F("Vpp"));
    }
    oled.display();                         // 実際に表示 actual display here
    digitalWrite(13, LOW);                  // stop LED flash
    delay(150);                             // wait next measure
  }
}

void uuPinOutputLow(unsigned int d, unsigned int a) { // 指定ピンをLOW出力に設定 output LOW at specfied pin
  // PORTx =0, DDRx=1
  // example uuPinOutputLow(0b00000001111000, 0b000000); D3-6 output Low
  unsigned int x;
  x = d & 0x00FF; PORTD &= ~x; DDRD |= x;
  x = d >> 8;     PORTB &= ~x; DDRB |= x;
  x = a & 0x003F; PORTC &= ~x; DDRC |= x;
}

void pin2IRQ() {                   // 操作スイッチを割り込みで読む Pin2(int.0) interrupr handler
  // Pin8,9,10,11 buttons are bundled with diodes and connected to Pin2.
  // So, if any button is pressed, this routine will start.
  int x;                           // Port information holding variable

  x = PINB;                        // copy port B status
  if ( (x & 0x07) != 0x07) {       // if bottom 3bit is not all Hi(any wer pressed)
    saveTimer = 5000;              // set EEPROM save timer to 5 secnd
    switchPushed = true;           // switch pushed falag ON
  }
  if ((x & 0x01) == 0) {           // if select button(Pin8) pushed,
    scopeP++;                      // forward scope position
    if (scopeP > 2) {              // if upper limit
      scopeP = 0;                  // move to start position
    }
  }

  if ((x & 0x04) == 0) {           // if UP button(Pin9) pusshed, and
    if (scopeP == 0) {             // scoped vertical range
      vRange++;                    // V-range up !
      if (vRange > 9) {            // if upper limit
        vRange = 9;                // stay as is
      }
    }
    if (scopeP == 1) {             // if scoped hrizontal range
      hRange++;                    // H-range up !
      if (hRange > 11) {           // if upper limit
        hRange = 11;               // stay as is
      }
    }
    if (scopeP == 2) {             // if scoped trigger porality
      trigD = 0;                   // set trigger porality to +
    }
  }

  if ((x & 0x02) == 0) {           // if DOWN button(Pin10) pusshed, and
    if (scopeP == 0) {             // scoped vertical range
      vRange--;                    // V-range DOWN
      if (vRange < 2) {            // if bottom (レンジ番号0,1は欠番 以前はAuto5V Auto50V)
        vRange = 2;                // stay as is
      }
    }
    if (scopeP == 1) {             // if scoped hrizontal range
      hRange--;                    // H-range DOWN
      if (hRange < 0) {            // if bottom
        hRange = 0;                // satay as is
      }
    }
    if (scopeP == 2) {             // if scoped trigger porality
      trigD = 1;                   // set trigger porality to -
    }
  }

  if ((x & 0x08) == 0) {           // if HOLD button(pin11) pushed
    hold = ! hold;                 // revers the flag
  }
}

Может кто и поможет - выкладывайте , для начала, Ваши попытки - то , что сами пробовали.
Имхо, стоимость обычной Нано, скорее будет дешевле потраченного времени.

в том то и суть что новая нано уже есть и уже нужно сделать под неё

Вы сразу пишите, сколько денег готовы потратить?
Насколько я видел, вам на Гайвере предлагали сделать за 2 тыс - неужели это дорого?

1 лайк

с какой целью?
Чем обычная Нана не устраивает?

так я написал человеку, пока тишина от него

неудивительно :slight_smile:

1 лайк

Про цель (или причину) переделки напишите, пожалуйста. А то я затрудняюсь придумать хоть какое-то обоснование.

Надеюсь дело не в том, что Эвери у вас уже есть и ее надо “пристроить”?

буду расширять функционал программы не хватает памяти и нет я не желаю использовать внешнюю память

В таком случае переделка кода с обычной Нано была бы для Вас отличной тренировкой перед модификацией основного кода.

а кто сказал, что с Ардуиной можно использовать внешнюю память? :slight_smile:

1 лайк

И да, если бы Вы вместо Эвери взяли Мегу - переделывать бы почти ничего не пришлось и шансов влететь в несовместимости с иной линейкой контроллера было бы меньше.

1 лайк

ну мега тут уже по причине компактности не подходит :frowning:

мега бывает разная
Вот такая довольно удобная

всё же крупновата будет

Или перейти на другой тип мк, как вариант (если ресурсов не хватает).
Я вот люблю использовать всякие attiny13, pic12f629, но просто потому, что понимаю что мне этих ресурсов достаточно и они у меня есть в наличии (читай - даром).

@XAnder
Могу вам предложить следующее - я вам редактирую код, заменяя имена регистров Атмеги328 на подходящие от 4809. Критерий выполненности работы - если код компилируется под Нано Эвери без ошибок. Это будет стоить 2тыс.

Будет ли этот осциллограф после такой правки работать, как ожидается - это другой вопрос, этого я гарантировать не могу.

Для этого, как минимум, надо собирать макет и тестировать систему, возможно подбирая задержки. Тут надо вникать в проект совершенно на другом уровне.

Именно поэтому я и написал, что лучше всего вам взяться за эту работу самому - и в проект вникните, и с новой платой освоитесь. Потом будет проще модернизировать программу.

2 лайка

XAnder, а на 2т СТОЛЬКО обычных Нан можно накупить! Причём, в соседнем магазине даже.)

1 лайк

Так ему туда (в мк) ещё управление ядрёным реактором нужно впихнуть и закрылками посадочного модуля. В обычную Нану не влезет, видимо…

Это может и да, но осцила нормального не выйдет…))

А без него как ядрами управлять? Белочку звать?)